Preparing the project plan
Specifying tasks
Estimating tasks
Aggregating the estimates
Dealing with unknowns

The project plan
- We saw in session 1 that a project plan is . . .
 - a network of task specifications with
 - duration and cost estimates.
 - resource requirements.
- What is a task specification?
- What are two other common names for task network?

REVIEW Question
- Q: What is a task?
 - A: A unit of project work that:
 - a. can be assigned to an individual
 - b. is worth keeping track of
 - c. produces some definite useful result ("deliverable")
Alternative names for a task network

- **PERT** network (used mainly by military organizations) **Project Evaluation and Review Technique**
- **WBS** (used mainly in the Project Management Institute) **Work Breakdown Structure**

Defining a task

- **A task specification** defines precisely the work to be done.
 - Specifically it contains:
 1. A brief **description** or title
 2. A list of the specified tangible results or **task deliverables** to be produced
 3. A list of the **prerequisite tasks** that must be completed before this one can begin.
 4. Identification of the **resources** or skills required to perform it.

- **How do we record that information**
 - in a manual project plan?
 - in an automated PMS, such as **MS Project**?

How do we know when the prerequisite tasks are done?

- Easy: the **task deliverables** are available for use or inspection.
- **Q:** How do we (who?) know when a task is 75% done?
 - When 75% of the estimated duration has elapsed?
 - When 75% of the estimated cost has been incurred?
 - When the team member to whom it's assigned tells us?
 - or . . . ?

 What's one remedy for such uncertainty?

Estimating a task

- **We need good estimates of**
 - The **cost** of performing the task
 - The minimum **duration** for performing the task (i.e. if everything goes right)

 Why the minimum?

- **Who should determine those estimates?** When?

- **Note that man-month or person-hours is not a reciprocal relationship.**

 What does that mean?
Who makes the estimates and when?

- A project planning expert (often the project manager) makes the preliminary estimates in order to derive aggregate cost and (absolute or relative) target date.
- But when the task is later assigned to a team member, that individual team member must agree to the commitment for that task.

What if the team member and the project manager can't agree?

No "man-months"

- If one senior programmer can design and develop a high-level application framework in 12 weeks,
 - How long will it take three programmers of comparable experience?
 - Why?
- What kinds of work can be done efficiently in parallel?

Aggregating the task estimates

- Is a bottom-up process
- You need the project plan first, i.e. the set of task specifications.

Aggregating cost and time for a project (or major phase of a project)

A. Cost and resources:
 - Just sum the products of resource quantities by resource costs

B. Duration:
 - Compute the critical path, the sum of the longest durations in the task network.
 - But that assumes unlimited resources!
 - The critical path then represents the minimum time required. The actual time will depend on resource availability.
Estimating problem 1: Pressures on estimators

- "The new inventory control system absolutely must be operational when we move into our new automated warehouse a year from September."
 - edict from management

- Suppose the critical path yields completion the following January.
 - What should the project manager do?
 - What do typical project managers do?

Caving in to pressure (Hoping for a miracle?)

- A year from September is a long way off. *Somehow* we'll manage to meet the deadline (because we must!).

- We can
 - work extra hard,
 - hire more programmers,
 - put in overtime,
 - etc.

 A crash project!

Are "crash projects" ever justified?

- If there's a huge potential reward for success or a huge penalty for failure, we may charter a project to try on a *best effort* basis.
 - Provide top-quality support *such as?*

- If it then fails, the participants should be sincerely thanked for their efforts and in no case punished.

- If it succeeds the experience must not be taken as a new basis for reckless estimating of future projects.

Relationship to the phase disciplines

- For a non-trivial system development project we never know enough at the beginning to prepare a detailed task network for the *whole* project.

- But the phase disciplines we looked at last time solve that problem. We estimate
 - a. the next phase in detail
 - b. subsequent phases roughly

 What did we call that strategy?
Estimating problem 2: uncertain multipliers
- Certain tasks, especially in the early project phases, may spawn a variable number of other tasks, e.g.:
 - Task W: Identify next-level (subordinate) modules
 - Task Z1*: Develop module A
 - Task Z2*: Develop module B etc.
- *How can we estimate those before we actually do task W?
- We may have to make good guesses based on experience whose experience?

Estimating problem 3: dependency on creativity
- A critical task, especially in a highly advanced application, may require coming up with:
 a. some original idea,
 b. a solution to a so-far unsolved problem,
 c. research or experimentation with new technology that we don't yet fully understand,

 How can we estimate that?

One approach to dependency on creativity
- A critical task, especially in a highly advanced application, may require coming up with:
 a. some original idea,
 b. a solution to a so-far unsolved problem,
 c. research or experimentation with new technology that we don't yet fully understand,

- We may want to spin off a small research project to investigate and propose solutions
 - What's the impact on estimating?