Week 3: Phased Life Cycle
for a modern system development project

- Project plans
- The life-cycle concept
- Alternative versions
- Relationships to:
 - Testing
 - Quality assurance

Project:

- "An organized effort to reach a well-defined goal"
 -- Gildersleeve, 1974
- "A temporary endeavor undertaken to create a unique product or service." -- PMBOK, 1996
- A project always has a definite end.
- How unique does it have to be?
- Examples of projects? of non-project activity?
- Now: What's a successful project?

Why are we studying this in COMP 370?

- Loyola has another course, COMP 320, that's specifically about project management.
- But software quality is strongly affected by an organization's approach to project planning and control, especially by:
 - pressures to take short cuts
 - compromises with rigorous project discipline
 "Just get the product out the door! We can go back and polish it later."
- QA and PM must resist such pressures.

Successful Project
A project where the end product:

1. Satisfies agreed-upon requirements (or specifications).
2. Is delivered by an agreed-upon target date.
3. Is completed within an agreed-upon budget.
4. Complies with applicable standards.

What's all this "agreed-upon" stuff?
Are there no absolute measures?
Degrees of Success?

- A project where the end product:
 - Satisfies agreed-upon requirements.
 - Is delivered by an agreed-upon target date.
 - Is completed within an agreed-upon budget.
 - Complies with applicable quality standards.

Which of the above is:
- most important?
- most visible?
- least important?

Unsuccessful project

- What if a project is finished late and over budget?
- What if a project is aborted and never completed?
- What if a project is declared to be finished but doesn't fully satisfy the original requirements?

Concepts and Terminology

- We now know what these are:
 - Project
 - Successful project
- This session will look at these:
 - Task / Task specification
 - Phase / End-of-phase decision
 - Project life cycle
 - Life-cycle methodology
 - Life-cycle system
 - Methodology
Task:
- A unit of project work that:
 - Can be assigned to a single individual
 - Is worth keeping track of
 - Produces a well-defined result ("task deliverable")

 The only official unit of project work.

Task specification:
- A plan for performing a task, including:
 - Specification of the task deliverables
 - List of prerequisite tasks.
 - Estimates of resources needed/cost
 - Estimated duration

Predecessor (or prerequisite) relationship
- What does it mean for task P to be a prerequisite to task Q?
 - Task Q cannot be started until task P is finished.
 - Usually because task Q needs the deliverables produced by task P
 - A milestone has prerequisites but 0 duration

A simple task network

How long is the critical path?

Project plan:
- A network of task specifications.

Weisert's rule #1 on project failure:
- Insufficient detail in the project plan is one of the two most common reasons why projects fail. That is:
 - The tasks on the plan are too big (too long duration) for accurate estimating and tracking.
 - There aren't enough tasks to provide visibility over the work to be done.
 - Task deliverables are only vaguely specified

How can we avoid such failures?
How big should a task be?

- A task is too big if:
 - It isn't clear exactly how it can be done.
 - Its estimated duration exceeds 2-4 weeks.
- A task is too small if:
 - The effort required to administer (assign and keep track of) it is comparable to the effort to do it.
 - It is the only successor to another small task that is always assigned to the same person.

Example?

- When in doubt, too small is better. Why?

Aggregating the task estimates

- **Cost**: sum for all tasks of resource cost \(\times \) resource quantity
- **Duration**: sum of duration along longest ("critical") path in the network.
 - This is the *minimum duration* even if infinite resources were available.

 This will be covered in detail later

Task-level status reporting

- Which of these status reports contains more information?

 | An eight-week task is 50% done |
 | 4 (of 8) one-week tasks are complete |

Non-binary task status

- What does it mean to say that a task is:
 - "50 percent done"?
 - "95 percent done"?
 - "complete (except for a couple of minor loose ends that we'll take care of this weekend)"?
Binary task-status reporting
- Once the project manager assigns a task to an individual project team member, its status must be tracked, i.e. reported periodically.
- Only 2 possibilities: a task is either:
 - complete (task deliverables on file and available)
 - or incomplete, with definite estimates of target date and remaining cost. Those estimates may either:
 - confirm (or improve upon) previous estimates
 - or be supported by an explanation

Task-level status reporting frequency
- How often should team members report on the status of tasks assigned to them?
 - Often enough to assure early warning of slippage or overrun
 - but not so often as to constitute unreasonably burdensome overhead
- For typical information systems projects weekly status reporting is a good balance

Avoiding loss of control
- The combination of:
 - Short task durations and
 - Weekly binary task status reporting forces each team member to face reality now rather than hoping for a miracle later.

Corrective action
- Even with early warning, what can a project manager do after discovering that tasks are slipping?
- Can we correct the problem by
 - adding more people to the project team?
 - compressing the schedule for later tasks?
 - Both are popular pseudo-remedies!
Brooks's Law

"Adding manpower to a late project makes it later."
- Frederick P. Brooks, jr.: The Mythical Man-Month, 1982, Addison-Wesley

Do we agree? Why?

Making up time in later tasks

Consider this argument:
1. Our project is now 3 weeks behind schedule.
2. We originally allocated 5 weeks for final system acceptance testing.
3. Therefore, if we do the acceptance testing in 2 weeks, we'll make up the lost time and deliver the system on schedule.

What's the obvious question?
What are the likely consequences?

Project Phase:
- A major sequence of project activity that:
 - Represents a manageable commitment and an acceptable risk.
 - Can be planned, scheduled, and controlled in full detail
 - Produces a cohesive set of results ("phase deliverables") upon which the project's sponsors can make a rational decision:
 a. To approve / fund the next phase and continue, or
 b. To re-do part of this or an earlier phase, or
 c. To change the project scope or objectives, or
 d. To abort the project.

End-of-phase decisions

- Examine phase deliverables
- Satisfactory? Y
 - Review budget & schedule for next phase
 - Assess costs, benefits, & risks
 - Justified?
 - More funds available? N
 - Abort project
 - N
 - Next phase
 - Y
 - Content Review
 - Funding Review
 - Re-do part of phase, or
 - N
 - Re-do part of phase, or
More terminology . . .

Project life cycle:
- The sequence of phases in a project.

Life-cycle methodology (LCM): (or model)
- A standard life cycle for almost all projects of a particular kind, such as:
 - application system development projects (SDLC)
 - major software enhancement projects
 - conversion (platform, language, DBMS, . .) projects
 - course development projects
- Is any uniform sequence practical and realistic?

Estimating
- At the start of each phase, the project manager prepares:
 - Firm estimates for the next phase:
 - budget
 - schedule
 - Rough estimates for the rest of the whole project:
 - range of costs
 - range of target dates
- At the completion of each phase we know more about the scope of work and can therefore narrow the range.

Moving-Window estimates of total project cost
![Graph showing moving-window estimates of total project cost]

II. Characteristics of a modern results-oriented life-cycle model
- Packaged life-cycle systems
- A reasonable 7-phase model
- Activity-oriented versus results-oriented LCM’s
- Multiple layer presentation
- Deliverables specifications
- Model task specifications
- Phase cost ratios
Life cycle system (LCS):

- A packaged (how?) LCM often sold as a product. *Examples?*
- Such products were popular in the 1970's
- Some remain today, often built into a C.A.S.E. tool.
- Some have as few as 3 phases:
 - Analysis
 - Design & construction
 - Installation
- One has 14!
 What does our textbook recommend?

A reasonable and typical LCM for system development

1. Project definition
2. Business requirements specification
3. External design
4. System architecture
5. Construction
6. Installation
7. Review

What's the significance of the dividing line between phases 3 and 4?

Phase 1. Project Initiation

Representatives of prospective users and developers agree that:

- some problem might be solved or
- some opportunity might be met using information technology.

They establish a project, which then determines the initial project scope.

Phase 2. Business System Requirements

Systems analysts work with the prospective users:

- to specify what capabilities a new system must support and
- to assess the feasibility of developing (or buying) such a system

This phase is poorly understood and is rarely performed well.
Phase 3. External System Design

Systems analysts specify exactly what the proposed system will do in terms that both users and developers will understand. They may also recommend (or specify constraints on) equipment, software, development tools, or design approaches.

What are some other common names for this phase?

Phase 4. Computer System Architecture

Technical specialists establish a structure for a computer-based system to implement the ESD. In parallel with the above, systems analysts and users assess organizational impacts, and begin preparing plans for testing, training, and installation.

What are some other common names for this phase?

Phase 5. Programming

Technical specialists build the system according to the overall architecture.
- For in-house (or contract) development, they:
 - design, code, and test programs
 - establish data bases
- For purchased components, they:
 - order, test, and install software products
- For all systems they:
 - prepare operational documentation,
 - package the system for routine operation, and
 - conduct integrated system testing.

What are some other names for this phase?

Phase 6. Installation

- Systems analysts, programmers, and users cooperate to bring the already tested and documented components into operational ("production") status.
- Their activities include:
 - Training, user personnel
 - Acceptance testing
 - Conversion (or "start up") to initialize the live database and lead into routine operation.

What are some other names for this phase?
Phase 7. Project review

The developer organization assesses the project, both improve its own future effectiveness and to propose improvements to the recently-installed system. They evaluate:

- How well the new system is meeting the user organization’s needs
- the operational cost, performance, and reliability of the system.
- the cost and duration of the project.

This phase is often omitted. Why?

Overview of phases (review)

1. Project definition
2. Business requirements specification
3. External design
4. System architecture
5. Construction
6. Installation
7. Review

What’s the significance of the dividing line between phases 3 and 4?

The critical point

- The end of phase 3 (ESD, “Functional Specification”, “Detailed User Requirements”, or ..) is the most important point in a project’s life cycle.

More about this later.

- It is the last point:
 - at which we can make changes without huge cost.
 - where the sponsoring end users can be expected to understand the deliverables.
 - that is (or at least should be) independent of:
 - operating platform(s)
 - make or buy choice
 - development tools and methodologies
 - etc.

Weisert’s Rule # 2 on project failure:

- Inadequate external design is one of the two most common reasons why projects fail.

What was the other one?
What do we mean by "inadequate External Design"?

- The deliverables contents are one or more of:
 - incomplete,
 - erroneous, inconsistent,
 - incomprehensible to the intended audiences,
 - mixed up with internal design.

Especially this Common with inexperienced analysts.

Enlightened project failure

- We know the two most common cause of project failure.
- We know how to avoid them.
- So why do so many projects still fail?

Typical phase cost ratios

Management by wishful thinking

I agree with you in principle, but this project is so urgent that we just can’t afford the luxury of following the standards.
Methodology choices during a project

1. Project definition
2. Business requirements specification
3. External design
4. System architecture
5. Construction
6. Installation

The tools and techniques we use in these analysis phases are (can be / should be) largely independent of the tools and techniques we use in these implementation phases.

Alternatives to the phased life cycle

Although the benefits of a phased life cycle have been demonstrated many times over, some current writers promoting newer methodologies disparage it.

Alternatives proposed include:

- Incremental or iterative development
- Rapid application development ("RAD")
- Visual application design
- Agile development

What do we already know about those?

21st Century System development

We’ve adopted an incremental approach to developing our applications! Then why do all our systems still turn out to be excremental?

What did all that have to do with testing? with quality?

Pressure to compress testing when a project is behind schedule.

"Just get it working! We can go back and polish up the details later."

Clarification of stages of testing; which project phase addresses which testing stage?
Correspondences

- Project Phase
 1. initiation
 2. business requirements
 3. external design
 4. internal design
 5. construction
 6. installation
 7. review

- Testing stage
 a. unit test
 b. integration test
 c. system test
 d. alpha test
 e. beta test
 f. stress test
 g. acceptance test